ATK-ForceField

Introduction

The ATK-ForceField module provides calculators for empirical force fields [SHC+17]. It includes the following calculators:

Note

For QuantumATK-versions older than 2017, this module is present under the name ATK-Classical.

TremoloX

The TremoloXCalculator, which provides most of the potential classes and parameters sets in the ATK-ForceField module, is developed by the Fraunhofer Institute for Algorithms and Scientific Computing (SCAI). For details about TremoloX, see also www.tremolo-x.com.

TremoloX uses highly efficient state of the art algorithms for the treatment of short- and long-range potentials. TremoloX provides a large database of pre-defined TremoloX potential parameter sets, for modeling of systems in material science and nanotechnology. It also allows the user to set up custom potentials by combining the available TremoloX potential classes.

TremoloX potential classes

TremoloX potential parameter sets

Anwar_NaCl_2003 (Na, Cl)

  1. Anwar, D. Frenkel, and M. G. Noro, Calculation of the melting point of NaCl by molecular simulation, The Journal of Chemical Physics, 118, pp. 728-735, 2003 link

Billeter_HNOSi_2006 (H, Si, O, N)

    1. Billeter, A. Curioni, D. Fischer, and W. Andreoni, Ab initio derived augmented Tersoff potential for silicon oxynitride compounds and their interfaces with silicon, Phys. Rev. B, 73, p. 155329, 2006 link

Brenner_CH_1990 (H, C)

    1. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B, 42, pp. 9458-9471, 1990

Broglia_HfOSi_2014 (Si, Hf, O)

  1. Broglia, G. Ori, L. Larcher, and M. Montorsi, Molecular dynamics simulation of amorphous HfO2 for resistive RAM applications, Modelling and Simulation in Materials Science and Engineering, 22, p. 065006, 2014 link

COMB_NTi_2014 (N, Ti)

  1. Cheng, T. Liang, J. A. Martinez, S. R. Phillpot, and S. B. Sinnott, A charge optimized many-body potential for titanium nitride (TiN), Journal of Physics: Condensed Matter, 26, p. 265004, 2014 link

COMB_OSi_2007 (Si, O)

  1. Yu, S. B. Sinnott, and S. R. Phillpot, Charge optimized many-body potential for the Si/SiO2 system, Phys. Rev. B, 75, p. 085311, 2007 link

COMB_OSi_2010 (Si, O)

  1. Shan, B. D. Devine, J. M. Hawkins, A. Asthagiri, S. R. Phillpot, and S. B. Sinnott, Second-generation charge-optimized many-body potential for Si/SiO2 and amorphous silica, Phys. Rev. B, 82, p. 235302, 2010 link

EAMFS_Ag_1987 (Ag)

  1. Ackland, G. Tichy, V. Vitek, and M. Finnis, Simple N-body potentials for the noble metals and nickel, Philosophical Magazine A, 56, pp. 735–756, 1987

EAMFS_AlFe_2005 (Al, Fe)

    1. Mendelev, D. J. Srolovitz, G. J. Ackland, and S. Han, Effect of Fe segregation on the migration of a non-symmetric Sigma 5 tilt grain boundary in Al, J. Mater. Res., 20, pp. 208-218, 2005

EAMFS_AlMg_2009 (Mg, Al)

  1. Mendelev, M. Asta, M. Rahman, and J. Hoyt, Development of interatomic potentials appropriate for simulation of solid–liquid interface properties in Al–Mg alloys, Philosophical Magazine, 89, pp. 3269–3285, 2009

EAMFS_AlSm_2015 (Al, Sm)

  1. Mendelev, F. Zhang, Z. Ye, Y. Sun, M. Nguyen, S. Wilson, C. Wang, and K. Ho, Development of interatomic potentials appropriate for simulation of devitrification of Al90Sm10 alloy, Modelling and Simulation in Materials Science and Engineering, 23, p. 045013, 2015

EAMFS_Al_2000 (Al)

    1. Sturgeon and B. B. Laird, Adjusting the melting point of a model system via Gibbs-Duhem integration: Application to a model of aluminum, Physical Review B, 62, p. 14720, 2000

EAMFS_Al_2008 (Al)

  1. Mendelev, M. Kramer, C. Becker, and M. Asta, Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu, Philosophical Magazine, 88, pp. 1723–1750, 2008

EAMFS_Au_1987 (Au)

  1. Ackland, G. Tichy, V. Vitek, and M. Finnis, Simple N-body potentials for the noble metals and nickel, Philosophical Magazine A, 56, pp. 735–756, 1987

EAMFS_CFe_2008 (C, Fe)

    1. Hepburn and G. J. Ackland, Metallic-covalent interatomic potential for carbon in iron, Physical Review B, 78, p. 165115, 2008

EAMFS_CuZr_2007 (Cu, Zr)

  1. Mendelev, D. Sordelet, and M. Kramer, Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses, Journal of Applied Physics, 102, pp. 043501–043501, 2007

EAMFS_CuZr_2009 (Zr, Cu)

  1. Mendelev, M. Kramer, R. Ott, D. Sordelet, D. Yagodin, and P. Popel, Development of suitable interatomic potentials for simulation of liquid and amorphous Cu–Zr alloys, Philosophical Magazine, 89, pp. 967–987, 2009

EAMFS_CuZr_2016 (Zr, Cu)

  1. Borovikov, M. I. Mendelev, and A. H. King, Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals, Modelling and Simulation in Materials Science and Engineering, 24, p. 085017, 2016

EAMFS_Cu_1987 (Cu)

  1. Ackland, G. Tichy, V. Vitek, and M. Finnis, Simple N-body potentials for the noble metals and nickel, Philosophical Magazine A, 56, pp. 735–756, 1987

EAMFS_Cu_1990 (Cu)

    1. Ackland and V. Vitek, Many-body potentials and atomic-scale relaxations in noble-metal alloys, Physical review B, 41, p. 10324, 1990

EAMFS_Cu_2008 (Cu)

  1. Mendelev, M. Kramer, C. Becker, and M. Asta, Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu, Philosophical Magazine, 88, pp. 1723–1750, 2008

EAMFS_FeP_2004 (P, Fe)

  1. Ackland, M. Mendelev, D. Srolovitz, S. Han, and A. Barashev, Development of an interatomic potential for phosphorus impurities in α-iron, Journal of Physics: Condensed Matter, 16, p. S2629, 2004

EAMFS_FeV_2007 (Fe, V)

    1. Mendelev, S. Han, W. Son, G. J. Ackland, and D. J. Srolovitz, Simulation of the interaction between Fe impurities and point defects in V, Physical Review B, 76, p. 214105, 2007

EAMFS_Fe_1997 (Fe)

  1. Ackland, D. Bacon, A. Calder, and T. Harry, Computer simulation of point defect properties in dilute Fe—Cu alloy using a many-body interatomic potential, Philosophical Magazine A, 75, pp. 713–732, 1997

EAMFS_Fe_2003 (Fe)

  1. Mendelev, S. Han, D. Srolovitz, G. Ackland, D. Sun, and M. Asta, Development of new interatomic potentials appropriate for crystalline and liquid iron, Philosophical magazine, 83, pp. 3977–3994, 2003

EAMFS_Fe_2003b (Fe)

  1. Mendelev, S. Han, D. Srolovitz, G. Ackland, D. Sun, and M. Asta, Development of new interatomic potentials appropriate for crystalline and liquid iron, Philosophical magazine, 83, pp. 3977–3994, 2003

EAMFS_Fe_2010 (Fe)

  1. Malerba, M. Marinica, N. Anento, C. Björkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, and others, Comparison of empirical interatomic potentials for iron applied to radiation damage studies, Journal of Nuclear Materials, 406, pp. 19–38, 2010

EAMFS_Fe_2012 (Fe)

  1. Proville, D. Rodney, and M. Marinica, Quantum effect on thermally activated glide of dislocations, Nature materials, 11, p. 845, 2012

EAMFS_Mg_2006 (Mg)

  1. Sun, M. Mendelev, C. Becker, K. Kudin, T. Haxhimali, M. Asta, J. Hoyt, A. Karma, and D. Srolovitz, Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg, Physical Review B, 73, p. 024116, 2006

EAMFS_Na_2015 (Na)

  1. Wilson, K. Gunawardana, and M. Mendelev, Solid-liquid interface free energies of pure bcc metals and B2 phases, The Journal of chemical physics, 142, p. 134705, 2015

EAMFS_NiNb_2016 (Ni, Nb)

  1. Zhang, R. Ashcraft, M. Mendelev, C. Wang, and K. Kelton, Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy, The Journal of chemical physics, 145, p. 204505, 2016

EAMFS_NiZr_2012 (Ni, Zr)

  1. Mendelev, M. Kramer, S. Hao, K. Ho, and C. Wang, Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy, Philosophical Magazine, 92, pp. 4454–4469, 2012

EAMFS_NiZr_2015 (Ni, Zr)

  1. Wilson and M. Mendelev, Anisotropy of the solid–liquid interface properties of the Ni–Zr B33 phase from molecular dynamics simulation, Philosophical Magazine, 95, pp. 224–241, 2015

EAMFS_Ni_1987 (Ni)

  1. Ackland, G. Tichy, V. Vitek, and M. Finnis, Simple N-body potentials for the noble metals and nickel, Philosophical Magazine A, 56, pp. 735–756, 1987

EAMFS_Ni_2012 (Ni)

  1. Mendelev, M. Kramer, S. Hao, K. Ho, and C. Wang, Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy, Philosophical Magazine, 92, pp. 4454–4469, 2012

EAMFS_Ru_2008 (Ru)

  1. Fortini, M. I. Mendelev, S. Buldyrev, and D. Srolovitz, Asperity contacts at the nanoscale: Comparison of Ru and Au, Journal of Applied Physics, 104, pp. 074320–074320, 2008

EAMFS_Ti_1992 (Ti)

    1. Ackland, Theoretical study of titanium surfaces and defects with a new many-body potential, Philosophical Magazine A, 66, pp. 917–932, 1992

EAMFS_Ti_Mendelev_1_2016 (Ti)

  1. Mendelev, T. Underwood, and G. Ackland, Interatomic Potentials for the Simulation of Defects, Plasticity and Phase Transformations in Titanium, TBP

EAMFS_Ti_Mendelev_2_2016 (Ti)

  1. Mendelev, T. Underwood, and G. Ackland, Interatomic Potentials for the Simulation of Defects, Plasticity and Phase Transformations in Titanium, TBP

EAMFS_Ti_Mendelev_3_2016 (Ti)

  1. Mendelev, T. Underwood, and G. Ackland, Interatomic Potentials for the Simulation of Defects, Plasticity and Phase Transformations in Titanium, TBP

EAMFS_W_2_2014 (W)

  1. Marinica, L. Ventelon, M. Gilbert, L. Proville, S. Dudarev, J. Marian, G. Bencteux, and F. Willaime, Interatomic potentials for modelling radiation defects and dislocations in tungsten, Journal of Physics: Condensed Matter, 25, p. 395502, 2013

EAMFS_W_3_2014 (W)

  1. Marinica, L. Ventelon, M. Gilbert, L. Proville, S. Dudarev, J. Marian, G. Bencteux, and F. Willaime, Interatomic potentials for modelling radiation defects and dislocations in tungsten, Journal of Physics: Condensed Matter, 25, p. 395502, 2013

EAMFS_W_4_2014 (W)

  1. Marinica, L. Ventelon, M. Gilbert, L. Proville, S. Dudarev, J. Marian, G. Bencteux, and F. Willaime, Interatomic potentials for modelling radiation defects and dislocations in tungsten, Journal of Physics: Condensed Matter, 25, p. 395502, 2013

EAM_AgCu_2006 (Ag, Cu)

  1. Williams, Y. Mishin, and J. Hamilton, An embedded-atom potential for the Cu–Ag system, Modelling and Simulation in Materials Science and Engineering, 14, p. 817, 2006

EAM_AgCu_2009 (Ag, Cu)

    1. Wu and D. R. Trinkle, Cu/Ag EAM potential optimized for heteroepitaxial diffusion from ab initio data, Computational Materials Science, 47, pp. 577–583, 2009

EAM_AgHPd_Hybrid_2013 (H, Pd, Ag)

    1. Hale, B. M. Wong, J. A. Zimmerman, and X. Zhou, Atomistic potentials for palladium–silver hydrides, Modelling and Simulation in Materials Science and Engineering, 21, p. 045005, 2013

EAM_AgHPd_Morse_2013 (H, Pd, Ag)

    1. Hale, B. M. Wong, J. A. Zimmerman, and X. Zhou, Atomistic potentials for palladium–silver hydrides, Modelling and Simulation in Materials Science and Engineering, 21, p. 045005, 2013

EAM_Ag_2004 (Ag)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_Ag_2006 (Ag)

  1. Williams, Y. Mishin, and J. Hamilton, An embedded-atom potential for the Cu–Ag system, Modelling and Simulation in Materials Science and Engineering, 14, p. 817, 2006

EAM_Ag_Sheng_2011 (Ag)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_AlAg_Sheng_2011 (Al, Ag)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_AlCu_Sheng_2011 (Al, Cu)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_AlMg_1997 (Mg, Al)

  1. Liu, P. Ohotnicky, J. Adams, C. L. Rohrer, and R. Hyland Jr, Anisotropic surface segregation in Al Mg alloys, Surface science, 373, pp. 357–370, 1997

EAM_AlMnPd_2012 (Mn, Al, Pd)

  1. Schopf, P. Brommer, B. Frigan, and H. Trebin, Embedded atom method potentials for Al-Pd-Mn phases, Physical Review B, 85, p. 054201, 2012

EAM_AlNbTi_1996 (Nb, Al, Ti)

  1. Farkas and C. Jones, Interatomic potentials for ternary Nb-Ti-Al alloys, Modelling and Simulation in Materials Science and Engineering, 4, p. 23, 1996

EAM_AlNiH_1997 (H, Al, Ni)

  1. Baskes, X. Sha, J. Angelo, and N. Moody, Trapping of hydrogen to lattice defects in nickel, Modelling and Simulation in Materials Science and Engineering, 5, p. 651, 1997
    1. Angelo, N. R. Moody, and M. I. Baskes, Trapping of hydrogen to lattice defects in nickel, Modelling and Simulation in Materials Science and Engineering, 3, p. 289, 1995

EAM_AlNi_2002 (Ni, Al)

  1. Mishin, M. Mehl, and D. Papaconstantopoulos, Embedded-atom potential for B2-NiAl, Physical Review B, 65, p. 224114, 2002

EAM_AlNi_2004 (Ni, Al)

  1. Mishin, Atomistic modeling of the γ and gamma prime-phases of the Ni–Al system, Acta materialia, 52, pp. 1451–1467, 2004

EAM_AlNi_2009 (Ni, Al)

  1. Purja Pun and Y. Mishin, Development of an interatomic potential for the Ni-Al system, Philosophical Magazine, 89, pp. 3245–3267, 2009

EAM_AlPb_2000 (Pb, Al)

  1. Landa, P. Wynblatt, D. Siegel, J. Adams, O. Mryasov, and X. Liu, Development of glue-type potentials for the Al–Pb system: phase diagram calculation, Acta materialia, 48, pp. 1753–1761, 2000

EAM_AlTi_2003 (Al, Ti)

    1. Zope and Y. Mishin, Interatomic potentials for atomistic simulations of the Ti-Al system, Physical Review B, 68, p. 024102, 2003

EAM_AlZr_Sheng_2011 (Al, Zr)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Al_1999 (Al)

  1. Mishin, D. Farkas, M. Mehl, and D. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Physical Review B, 59, p. 3393, 1999

EAM_Al_2003 (Al)

    1. Zope and Y. Mishin, Interatomic potentials for atomistic simulations of the Ti-Al system, Physical Review B, 68, p. 024102, 2003

EAM_Al_2009 (Al)

  1. Winey, A. Kubota, and Y. Gupta, A thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum, Modelling and Simulation in Materials Science and Engineering, 17, p. 055004, 2009

EAM_Al_2009b (Al)

  1. Zhakhovskii, N. Inogamov, Y. V. Petrov, S. Ashitkov, and K. Nishihara, Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials, Applied Surface Science, 255, pp. 9592–9596, 2009

EAM_Al_Lui_2004 (Al)

  1. Liu, F. Ercolessi, and J. B. Adams, Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy, Modelling and Simulation in Materials Science and Engineering, 12, p. 665, 2004

EAM_Al_Sheng_2011 (Al)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Al_Zhou_2004 (Al)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_Au_2004 (Au)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_Au_2005 (Au)

  1. Grochola, S. P. Russo, and I. K. Snook, On fitting a gold embedded atom method potential using the force matching method, The Journal of chemical physics, 123, p. 204719, 2005

EAM_Au_2009 (Au)

  1. Zhakhovskii, N. Inogamov, Y. V. Petrov, S. Ashitkov, and K. Nishihara, Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials, Applied Surface Science, 255, pp. 9592–9596, 2009

EAM_Au_Olsson_2016 (Au)

    1. Olsson, Transverse resonant properties of strained gold nanowires, Journal of Applied Physics, 108, p. 034318, 2010

EAM_Au_Sheng_2011 (Au)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Ca_Sheng_2011 (Ca)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Ce_Sheng_2011 (Ce)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Co_2004 (Co)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_Co_2012 (Co)

    1. Pun and Y. Mishin, Embedded-atom potential for hcp and fcc cobalt, Physical Review B, 86, p. 134116, 2012

EAM_CrFeNi_2013 (Cr, Fe, Ni)

  1. Bonny, N. Castin, and D. Terentyev, Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy, Modelling and Simulation in Materials Science and Engineering, 21, p. 085004, 2013

EAM_CuFeNi_2009 (Ni, Fe, Cu)

  1. Bonny, R. C. Pasianot, N. Castin, and L. Malerba, Ternary Fe–Cu–Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing, Philosophical Magazine, 89, pp. 3531–3546, 2009

EAM_CuZr_Sheng_2011 (Zr, Cu)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Cu_2001b (Cu)

  1. Mishin, M. Mehl, D. Papaconstantopoulos, A. Voter, and J. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Physical Review B, 63, p. 224106, 2001

EAM_Cu_2004 (Cu)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_Cu_Sheng_2011 (Cu)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_FeNi_2009 (Ni, Fe)

  1. Bonny, R. Pasianot, and L. Malerba, Fe–Ni many-body potential for metallurgical applications, Modelling and Simulation in Materials Science and Engineering, 17, p. 025010, 2009

EAM_Fe_2004 (Fe)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_HPd_2008 (H, Pd)

  1. Zhou, J. Zimmerman, B. Wong, and J. Hoyt, An embedded-atom method interatomic potential for Pd–H alloys, Journal of Materials Research, 23, pp. 704–718, 2008

EAM_Ir_Sheng_2011 (Ir)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_MgCu_Sheng_2011 (Mg, Cu)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_MgTi_Sheng_2011 (Mg, Ti)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_MgY_Sheng_2011 (Y, Mg)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Mg_2004 (Mg)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_MoUXe_2013 (Mo, U, Xe)

  1. Smirnova, A. Y. Kuksin, S. Starikov, V. Stegailov, Z. Insepov, J. Rest, and A. Yacout, A ternary EAM interatomic potential for U–Mo alloys with xenon, Modelling and Simulation in Materials Science and Engineering, 21, pp. 35011–35034, 2013

EAM_Mo_2004 (Mo)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_Nb_2010 (Nb)

    1. Fellinger, H. Park, and J. W. Wilkins, Force-matched embedded-atom method potential for niobium, Physical Review B, 81, p. 144119, 2010

EAM_NiP_Sheng_2011 (Ni, P)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_NiZr_Sheng_2011 (Ni, Zr)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Ni_1999 (Ni)

  1. Mishin, D. Farkas, M. Mehl, and D. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Physical Review B, 59, p. 3393, 1999

EAM_Ni_2004 (Ni)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_Ni_Sheng_2011 (Ni)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Pb_2004 (Pb)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_Pb_Sheng_2011 (Pb)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_PdSi_Sheng_2011 (Si, Pd)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Pd_Sheng_2011 (Pd)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Pd_Zhou_2004 (Pd)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_Pt_2004 (Pt)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_Pt_Sheng_2011 (Pt)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Rh_Sheng_2011 (Rh)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Sr_Sheng_2011 (Sr)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Ta1_2013 (Ta)

  1. Ravelo, T. Germann, O. Guerrero, Q. An, and B. Holian, Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations, Physical Review B, 88, p. 134101, 2013

EAM_Ta2_2013 (Ta)

  1. Ravelo, T. Germann, O. Guerrero, Q. An, and B. Holian, Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations, Physical Review B, 88, p. 134101, 2013

EAM_Ta_2003 (Ta)

  1. Li, D. J. Siegel, J. B. Adams, and X. Liu, Embedded-atom-method tantalum potential developed by the force-matching method, Physical Review B, 67, p. 125101, 2003

EAM_Ta_2004 (Ta)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_Ta_Sheng_2011 (Ta)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Ti_2004 (Ti)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_U_2013 (U)

  1. Smirnova, S. Starikov, and V. Stegailov, Interatomic potential for uranium in a wide range of pressures and temperatures, Journal of Physics: Condensed Matter, 24, p. 015702, 2012

EAM_WHHe_Bonny_1_2014 (H, W, He)

  1. Bonny, P. Grigorev, and D. Terentyev, On the binding of nanometric hydrogen–helium clusters in tungsten, Journal of Physics: Condensed Matter, 26, p. 485001, 2014

EAM_WHHe_Bonny_2_2014 (H, W, He)

  1. Bonny, P. Grigorev, and D. Terentyev, On the binding of nanometric hydrogen–helium clusters in tungsten, Journal of Physics: Condensed Matter, 26, p. 485001, 2014

EAM_WRe_2017 (Re, W)

  1. Bonny, A. Bakaev, D. Terentyev, and Y. A. Mastrikov, Interatomic potential to study plastic deformation in tungsten-rhenium alloys, Journal of Applied Physics, 121, p. 165107, 2017

EAM_W_2004 (W)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_Zhou_2004 (Ni, Mg, Co, Ag, Pt, W, Mo, Al, Pb, Zr, Au, Fe, Pd, Ti, Cu, Ta)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_ZrCuAg_Sheng_2011 (Ag, Cu, Zr)

  1. Fujita, P. Guan, H. Sheng, A. Inoue, T. Sakurai, and M. Chen, Coupling between chemical and dynamic heterogeneities in a multicomponent bulk metallic glass, Physical Review B, 81, p. 140204, 2010
  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_ZrCuAl_Sheng_2011 (Cu, Zr, Al)

  1. Cheng, E. Ma, and H. Sheng, Atomic level structure in multicomponent bulk metallic glass, Physical review letters, 102, p. 245501, 2009
  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_ZrPt_Sheng_2011 (Pt, Zr)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EAM_Zr_2004 (Zr)

  1. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69, p. 144113, 2004

EAM_Zr_Sheng_2011 (Zr)

  1. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Physical Review B, 83, p. 134118, 2011

EMT_AgCu_2000 (Cu, Ag)

  1. Rasmussen, Simulation of misfit dislocation loops at the A g/C u (111) interface, Physical Review B, 62, p. 12664, 2000

EMT_CuAgAuNiPdPt_1996 (Ni, Ag, Pt, Au, Pd, Cu)

    1. Jacobsen, P. Stoltze, and J. Nørskov, A semi-empirical effective medium theory for metals and alloys, Surface Science, 366, pp. 394–402, 1996

EMT_CuMg_2004 (Mg, Cu)

    1. Bailey, J. Schiøtz, and K. W. Jacobsen, Simulation of Cu-Mg metallic glass: Thermodynamics and structure, Physical Review B, 69, p. 144205, 2004

EMT_CuZr_2007 (Zr, Cu)

  1. Pǎduraru, A. Kenoufi, N. P. Bailey, and J. Schiøtz, An interatomic potential for studying CuZr bulk metallic glasses, Advanced Engineering Materials, 9, pp. 505–508, 2007

FeustonGarofalini_CaHOSi_2004 (H, Ca, Al, O, Si, Na)

    1. Dolado, M. Griebel, and J. Hamaekers, A molecular dynamic study of cementitious calcium silicate hydrate (C–S–H) gels, Journal of the American Ceramic Society, 90, pp. 3938–3942, 2007
    1. Litton and S. H. Garofalini, Modeling of hydrophilic wafer bonding by molecular dynamics simulations, Journal of Applied Physics, 89, pp. 6013–6023, 2001
  1. Feuston and S. Garofalini, Onset of polymerization in silica sols, Chemical physics letters, 170, pp. 264–270, 1990
  1. Su and S. H. Garofalini, Role of nitrogen on the atomistic structure of the intergranular film in silicon nitride: A molecular dynamics study, Journal of materials research, 19, pp. 3679–3687, 2004

GuillotSator_OSiTiAlFe2MgCaNaK_2006 (Mg, Na, Ca, Al, O, Si, Fe, Ti, K)

”. Guillot and N. Sator”, A computer simulation study of natural silicate melts. Part I: Low pressure properties, Geochimica et Cosmochimica Acta, 71, pp. 1249 - 1265, 2007 link

GuillotSator_OSiTiAlFe3MgCaNaK_2006 (Mg, Na, Ca, Al, O, Si, Fe, Ti, K)

”. Guillot and N. Sator”, A computer simulation study of natural silicate melts. Part I: Low pressure properties, Geochimica et Cosmochimica Acta, 71, pp. 1249 - 1265, 2007 link

Guillot_KNCMFAT_2007 (Mg, Na, Ca, Al, O, Si, Fe, Ti, K)

”. Guillot and N. Sator”, A computer simulation study of natural silicate melts. Part I: Low pressure properties, Geochimica et Cosmochimica Acta, 71, pp. 1249 - 1265, 2007 link

Iwasaki_AlCuNOSiTiW_2001 (Al, O, N, Si, W, Ti, Cu)

  1. Iwasaki and H. Miura, Molecular dynamics analysis of adhesion strength of interfaces between thin films, Journal of Materials Research, 16, pp. 1789–1794, 2001 link

JacksonCatlow_AlOSi_1988 (Si, Al, O)

    1. Jackson and C. R. A. Catlow, Computer Simulation Studies of Zeolite Structure, Molecular Simulation,, 1, pp. 207–224, 1988

Jackson_HfO_2015 (Hf, O)

    1. Araujo, M. E. G. Valerio, and R. A. Jackson, Computer modelling of hafnium doping in lithium niobate, ArXiv e-prints, 2015

Jackson_LiNbO_2015 (Nb, O, Li)

    1. Araujo, M. E. G. Valerio, and R. A. Jackson, Computer modelling of hafnium doping in lithium niobate, ArXiv e-prints, 2015

Jahn_AlCaMgOSi_2007 (Ca, Si, Mg, O, Al)

  1. Jahn and P. A. Madden, Modeling Earth materials from crustal to lower mantle conditions: A transferable set of interaction potentials for the CMASsystem, Physics of the Earth and Planetary Interiors, 162, pp. 129 - 139, 2007 link

Kerisit_LiOTi3_2010 (Li, O, Ti)

  1. Kerisit, K. M. Rosso, Z. Yang, and J. Liu, Computer Simulation of the Phase Stabilities of Lithiated TiO2 Polymorphs, The Journal of Physical Chemistry C, 114, pp. 19096-19107, 2010

Kerisit_LiOTi4_2010 (Li, O, Ti)

  1. Kerisit, K. M. Rosso, Z. Yang, and J. Liu, Computer Simulation of the Phase Stabilities of Lithiated TiO2 Polymorphs, The Journal of Physical Chemistry C, 114, pp. 19096-19107, 2010

Leinenweber_MgSiO_1988 (Mg, Si, O)

  1. Leinenweber and A. Navrotsky, A transferable interatomic potential for crystalline phases in the system MgO—SiO2, Physics and Chemistry of Minerals, 15, pp. 588-596, 1988 link

Lusvardi_SiPNaCaOF_2008 (F, Na, Ca, O, P, Si)

  1. Lusvardi, G. Malavasi, M. Cortada, L. Menabue, M. C. Menziani, A. Pedone, and U. Segre, Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation., J Phys Chem B, 112, pp. 12730-9, 2008 link

MEAM_AgAuPdPtAl_2003 (Pt, Au, Pd, Ag, Al)

  1. Lee, J. Shim, and M. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Physical Review B, 68, p. 144112, 2003

MEAM_AgTaO_2013 (O, Ag, Ta)

  1. Gao, A. Otero-de-la-Roza, S. Aouadi, E. Johnson, and A. Martini, An empirical model for silver tantalate, Modelling and Simulation in Materials Science and Engineering, 21, p. 055002, 2013

MEAM_AlH_2011 (H, Al)

  1. Ko, J. Shim, and B. Lee, Atomistic modeling of the Al–H and Ni–H systems, Journal of Materials Research, 26, pp. 1552–1560, 2011

MEAM_AlSiMgCuFe_2012 (Mg, Si, Al, Cu, Fe)

  1. Jelinek, S. Groh, M. F. Horstemeyer, J. Houze, S. Kim, G. J. Wagner, A. Moitra, and M. I. Baskes, Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Physical Review B, 85, p. 245102, 2012

MEAM_AlU_2015 (U, Al)

  1. Pascuet and J. Fernández, Atomic interaction of the MEAM type for the study of intermetallics in the Al–U alloy, Journal of Nuclear Materials, 467, pp. 229–239, 2015

MEAM_Al_2015 (Al)

  1. Asadi, M. A. Zaeem, S. Nouranian, and M. I. Baskes, Two-phase solid–liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method, Acta Materialia, 86, pp. 169–181, 2015

MEAM_CH_2014 (H, C)

  1. Nouranian, M. A. Tschopp, S. R. Gwaltney, M. I. Baskes, and M. F. Horstemeyer, An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method, Physical Chemistry Chemical Physics, 16, pp. 6233–6249, 2014

MEAM_CoAl_2012 (Co, Al)

  1. Dong, H. Kim, W. Ko, B. Lee, and B. Lee, Atomistic modeling of pure Co and Co–Al system, Calphad, 38, pp. 7–16, 2012

MEAM_CuNi_2003 (Ni, Cu)

  1. Lee, J. Shim, and M. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Physical Review B, 68, p. 144112, 2003

MEAM_Cu_2015 (Cu)

  1. Asadi, M. A. Zaeem, S. Nouranian, and M. I. Baskes, Two-phase solid–liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method, Acta Materialia, 86, pp. 169–181, 2015

MEAM_FeC_2006 (C, Fe)

  1. Lee, A modified embedded-atom method interatomic potential for the Fe–C system, Acta Materialia, 54, pp. 701 - 711, 2006 link

MEAM_FeC_2014 (C, Fe)

    1. Liyanage, S. Kim, J. Houze, S. Kim, M. A. Tschopp, M. I. Baskes, and M. F. Horstemeyer, Structural, elastic, and thermal properties of cementite (Fe 3 C) calculated using a modified embedded atom method, Physical Review B, 89, p. 094102, 2014

MEAM_FeCrV_2001 (Cr, Fe, V)

  1. Lee, M. Baskes, H. Kim, and Y. K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Physical Review B, 64, p. 184102, 2001

MEAM_FeH_2007 (H, Fe)

  1. Lee, T. Lee, and S. Kim, A modified embedded-atom method interatomic potential for the Fe–N system: a comparative study with the Fe–C system, Acta materialia, 54, pp. 4597–4607, 2006

MEAM_FeMn_2009 (Mn, Fe)

  1. Kim, Y. Shin, and B. Lee, Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system, Acta Materialia, 57, pp. 474–482, 2009

MEAM_FeN_2006 (Fe, N)

  1. Lee, T. Lee, and S. Kim, A modified embedded-atom method interatomic potential for the Fe–N system: a comparative study with the Fe–C system, Acta materialia, 54, pp. 4597–4607, 2006

MEAM_FeP_2012 (P, Fe)

  1. Ko, N. J. Kim, and B. Lee, Atomistic modeling of an impurity element and a metal–impurity system: pure P and Fe–P system, Journal of Physics: Condensed Matter, 24, p. 225002, 2012

MEAM_FeTiC_2009 (C, Fe, Ti)

  1. Kim, W. Jung, and B. Lee, Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N ternary systems, Acta Materialia, 57, pp. 3140 - 3147, 2009 link

MEAM_Fe_2015 (Fe)

  1. Asadi, M. A. Zaeem, S. Nouranian, and M. I. Baskes, Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales, Physical Review B, 91, p. 024105, 2015

MEAM_Ge_2008 (Ge)

    1. Kim, Y. Shin, and B. Lee, A modified embedded-atom method interatomic potential for Germanium, Calphad, 32, pp. 34–42, 2008

MEAM_In_2008 (In)

    1. Do, Y. Shin, and B. Lee, A modified embedded-atom method interatomic potential for indium, Calphad, 32, pp. 82–88, 2008

MEAM_MgAl_2009 (Mg, Al)

  1. Kim, N. J. Kim, and B. Lee, Atomistic modeling of pure Mg and Mg–Al systems, Calphad, 33, pp. 650–657, 2009

MEAM_MgCa_2015 (Mg, Ca)

  1. Kim, J. B. Jeon, and B. Lee, Modified embedded-atom method interatomic potentials for Mg–X (X= Y, Sn, Ca) binary systems, Calphad, 48, pp. 27–34, 2015

MEAM_MgLi_2012 (Mg, Li)

  1. Kim, I. Jung, and B. Lee, Atomistic modeling of pure Li and Mg–Li system, Modelling and Simulation in Materials Science and Engineering, 20, p. 035005, 2012

MEAM_MgYSn_2015 (Y, Mg, Sn)

  1. Kim, J. B. Jeon, and B. Lee, Modified embedded-atom method interatomic potentials for Mg–X (X= Y, Sn, Ca) binary systems, Calphad, 48, pp. 27–34, 2015

MEAM_MoW_2001 (Mo, W)

  1. Lee, M. Baskes, H. Kim, and Y. K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Physical Review B, 64, p. 184102, 2001

MEAM_NbTa_2001 (Nb, Ta)

  1. Lee, M. Baskes, H. Kim, and Y. K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Physical Review B, 64, p. 184102, 2001

MEAM_Ni_2015 (Ni)

  1. Asadi, M. A. Zaeem, S. Nouranian, and M. I. Baskes, Two-phase solid–liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method, Acta Materialia, 86, pp. 169–181, 2015

MEAM_Pb_2003 (Pb)

  1. Lee, J. Shim, and M. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Physical Review B, 68, p. 144112, 2003

MEAM_SiOAu_2005 (Si, Au, O)

  1. Kuo and P. Clancy, Development of atomistic MEAM potentials for the silicon–oxygen–gold ternary system, Modelling and Simulation in Materials Science and Engineering, 13, p. 1309, 2005

MEAM_Si_2007 (Si)

  1. Lee, A modified embedded atom method interatomic potential for silicon, Calphad, 31, pp. 95–104, 2007

MEAM_TiCN_2008 (C, N, Ti)

  1. Kim and B. Lee, Modified embedded-atom method interatomic potentials for the Ti–C and Ti–N binary systems, Acta Materialia, 56, pp. 3481 - 3489, 2008 link

MEAM_Ti_2006 (Ti)

  1. Kim, B. Lee, and M. Baskes, Modified embedded-atom method interatomic potentials for Ti and Zr, Physical Review B, 74, p. 014101, 2006

MEAM_VH_2011 (H, V)

  1. Shim, Y. Lee, E. Fleury, Y. W. Cho, W. Ko, and B. Lee, A modified embedded-atom method interatomic potential for the V–H system, Calphad, 35, pp. 302–307, 2011

MEAM_VPdY_2013 (Y, Pd, V)

  1. Ko and B. Lee, Modified embedded-atom method interatomic potentials for pure Y and the V–Pd–Y ternary system, Modelling and Simulation in Materials Science and Engineering, 21, p. 085008, 2013

MEAM_ZrH_2014 (H, Zr)

  1. Lee and B. Lee, A comparative study on hydrogen diffusion in amorphous and crystalline metals using a molecular dynamics simulation, Metallurgical and Materials Transactions A, 45, pp. 2906–2915, 2014

MEAM_Zr_2006 (Zr)

  1. Kim, B. Lee, and M. Baskes, Modified embedded-atom method interatomic potentials for Ti and Zr, Physical Review B, 74, p. 014101, 2006

MacKerell_HO_1998 (H, O)

    1. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, The Journal of Physical Chemistry B, 102, pp. 3586-3616, 1998

MarianGastreich_SiBNH_2000 (H, Si, B, N)

    1. Marian and M. Gastreich, A systematic theoretical study of molecular Si/N, B/N, and Si/B/N (H) compounds and parameterisation of a force-field for molecules and solids, Journal of Molecular Structure: THEOCHEM, 506, pp. 107–129, 2000

MarianGastreich_SiBN_2003 (Si, B, N)

  1. Gastreich, J. D. Gale, and C. M. Marian, Charged-particle potential for boron nitrides, silicon nitrides, and borosilazane ceramics: Derivation of parameters and probing of capabilities, Physical Review B, 68, p. 094110, 2003

Marrocchelli_GeO_2010 (Ge, O)

  1. Marrocchelli, M. Salanne, P. Madden, C. Simon, and P. Turq, The construction of a reliable potential for GeO2 from first principles, Molecular Physics, 107, pp. 443-452, 2009 link

Matsui_AlCaMgOSi_1994 (Ca, Si, Mg, O, Al)

  1. Matsui, A transferable interatomic potential model for crystals and melts in the system CaO–MgO–Al2O3–SiO3, MinMag, 58, pp. 571–572, 1994

Matsui_MgOSi_1987 (Mg, Si, O)

  1. Matsui, M. Akaogi, and T. Matsumoto, Computational model of the structural and elastic properties of the ilmenite and perovskite phases of MgSiO3, Physics and Chemistry of Minerals, 14, pp. 101–106, 1987

Matsui_OTi_1991 (O, Ti)

  1. Matsui and M. Akaogi, Molecular Dynamics Simulation of the Structural and Physical Properties of the Four Polymorphs of TiO2, Molecular Simulation, 6, pp. 239-244, 1991

MitchellFincham_CaF_1993 (Ca, F)

    1. Mitchell and D. Fincham, Shell model simulations by adiabatic dynamics, Journal of Physics: Condensed Matter, 5, pp. 1031–1038, 1993

MitchellFincham_MgO_1993 (Mg, O)

    1. Mitchell and D. Fincham, Shell model simulations by adiabatic dynamics, Journal of Physics: Condensed Matter, 5, pp. 1031–1038, 1993

MitchellFincham_NaCl_1993 (Na, Cl)

    1. Mitchell and D. Fincham, Shell model simulations by adiabatic dynamics, Journal of Physics: Condensed Matter, 5, pp. 1031–1038, 1993

Oligschleger_Se_1996 (Se)

  1. Oligschleger, R. O. Jones, S. M. Reimann, and H. R. Schober, Model interatomic potential for simulations in selenium, Phys. Rev. B, 53, pp. 6165–6173, 1996 link

Pedone_2006Fe2 (Ni, Na, Nd, Li, Ti, Be, Ba, Fe, Mg, Sr, K, Mn, O, P, Si, Sn, Sc, Zn, Co, Ag, Ca, Al, Ge, Gd, Cu, Cr, Zr, Er)

  1. Pedone, G. Malavasi, M. Menziani, A. Cormack, and U. Segre, A new self-consistent empirical interatomic potential model for oxides, silicates and silica-based glasses, J. Phys. Chem. B, 110, pp. 11780–11795, 2006

Pedone_2006Fe3 (Ni, Na, Nd, Li, Ti, Be, Ba, Fe, Mg, Sr, K, Mn, O, P, Si, Sn, Sc, Zn, Co, Ag, Ca, Al, Ge, Gd, Cu, Cr, Zr, Er)

  1. Pedone, G. Malavasi, M. Menziani, A. Cormack, and U. Segre, A new self-consistent empirical interatomic potential model for oxides, silicates and silica-based glasses, J. Phys. Chem. B, 110, pp. 11780–11795, 2006

Pedone_AlCaNaOSi_2012 (Na, Ca, Al, O, Si)

  1. Pedone, E. Gambuzzi, and M. C. Menziani, Unambiguous Description of the Oxygen Environment in Multicomponent Aluminosilicate Glasses from 17O Solid State NMR Computational Spectroscopy, The Journal of Physical Chemistry C, 116, pp. 14599-14609, 2012

Pedone_LiNaKSiO_2007 (Na, K, Si, O, Li)

  1. Pedone, G. Malavasi, A. N. Cormack, U. Segre, and M. C. Menziani, Insight into elastic properties of binary alkali silicate glasses; prediction and interpretation through atomistic simulation techniques, Chemistry of materials, 19, pp. 3144–3154, 2007

Pinilla_HO_2012 (H, O)

  1. Pinilla, A. H. Irani, N. Seriani, and S. Scandolo, Ab initio parameterization of an all-atom polarizable and dissociable force field for water, The Journal of Chemical Physics, 136, p., 2012 link

ReaxFF_CHF (H, C, F)

. Oliver Böhm, CHF parameter set Version 4.6, 2015

ReaxFF_CHOCaSiAlS_2012 (C, S, H, Ca, Al, O, Si)

  1. Liu, A. Jaramillo-Botero, W. A. Goddard III, and H. Sun, Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations, The Journal of Physical Chemistry A, 116, pp. 3918–3925, 2012

ReaxFF_CHOFeSCr_2015 (C, H, O, S, Fe, Cr)

    1. Shin, H. Kwak, A. V. Vasenkov, D. Sengupta, and A. C. van Duin, Development of a ReaxFF reactive force field for Fe/Cr/O/S and application to oxidation of butane over a pyrite-covered Cr2O3 catalyst, ACS Catalysis, 5, pp. 7226–7236, 2015

ReaxFF_CHOFe_2010 (H, C, Fe, O)

  1. Aryanpour, A. C. T. van Duin, and J. D. Kubicki, Development of a Reactive Force Field for Iron−Oxyhydroxide Systems, The Journal of Physical Chemistry A, 114, pp. 6298-6307, 2010

ReaxFF_CHONSFPtClNi_2010 (Ni, C, Pt, F, H, Cl, O, N, S)

    1. Mueller, A. C. T. van Duin, and W. A. Goddard, Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel, The Journal of Physical Chemistry C, 114, pp. 4939-4949, 2010

ReaxFF_CHONSSiCaCsKSrNaMgAlCu_2015 (C, Mg, H, Ca, Al, Na, S, O, N, Si, Sr, Cs, K, Cu)

    1. Psofogiannakis, J. F. McCleerey, E. Jaramillo, and A. C. van Duin, ReaxFF Reactive Molecular Dynamics Simulation of the Hydration of Cu-SSZ-13 Zeolite and the Formation of Cu Dimers, The Journal of Physical Chemistry C, 119, pp. 6678–6686, 2015

ReaxFF_CHONSSiLi_2013 (C, H, S, O, N, Si, Li)

  1. A/S, Atomistix ToolKit 2014 Reference Manual, 2014

ReaxFF_CHONSSiPtZrNiCuCo_2005 (Ni, C, Co, Pt, H, S, O, N, Si, Cu, Zr)

    1. Nielson, A. C. van Duin, J. Oxgaard, W. Deng, and W. A. Goddard, Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes, The Journal of Physical Chemistry A, 109, pp. 493–499, 2005

ReaxFF_CHONSSi_2009 (C, H, S, O, N, Si)

  1. Zhang, S. V. Zybin, A. C. van Duin, S. Dasgupta, W. A. Goddard III, and E. M. Kober, Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations, The Journal of Physical Chemistry A, 113, pp. 10619–10640, 2009

ReaxFF_CHONSSi_2012 (C, H, S, O, N, Si)

    1. Kulkarni, D. G. Truhlar, S. Goverapet Srinivasan, A. C. van Duin, P. Norman, and T. E. Schwartzentruber, Oxygen interactions with silica surfaces: Coupled cluster and density functional investigation and the development of a new ReaxFF potential, The Journal of Physical Chemistry C, 117, pp. 258–269, 2012

ReaxFF_CHONSSi_2012_2 (C, H, S, O, N, Si)

    1. Newsome, D. Sengupta, H. Foroutan, M. F. Russo, and A. C. van Duin, Oxidation of Silicon Carbide by O2 and H2O: A ReaxFF Reactive Molecular Dynamics Study, Part I, The Journal of Physical Chemistry C, 116, pp. 16111–16121, 2012

ReaxFF_CHONS_2010 (H, C, S, O, N)

    1. Mattsson, J. M. D. Lane, K. R. Cochrane, M. P. Desjarlais, A. P. Thompson, F. Pierce, and G. S. Grest, First-principles and classical molecular dynamics simulation of shocked polymers, Phys. Rev. B, 81, p. 054103, 2010 link

ReaxFF_CHONSiPtZrYBaTi_2013 (C, Ba, Pt, H, O, N, Si, Ti, Y, Zr)

  1. Naserifar, L. Liu, W. A. Goddard III, T. T. Tsotsis, and M. Sahimi, Toward a Process-Based Molecular Model of SiC Membranes. 1. Development of a Reactive Force Field, The Journal of Physical Chemistry C, 117, pp. 3308–3319, 2013

ReaxFF_CHONTi_2012 (H, C, N, O, Ti)

  1. Jaramillo-Botero, Q. An, M. Cheng, W. A. Goddard III, L. W. Beegle, and R. Hodyss, Hypervelocity Impact Effect of Molecules from Enceladus’ Plume and Titan’s Upper Atmosphere on NASA’s Cassini Spectrometer from Reactive Dynamics Simulation, Physical review letters, 109, p. 213201, 2012

ReaxFF_CHON_2003 (H, C, O, N)

  1. Strachan, A. C. van Duin, D. Chakraborty, S. Dasgupta, and W. A. Goddard III, Shock waves in high-energy materials: The initial chemical events in nitramine RDX, Physical Review Letters, 91, p. 098301, 2003

ReaxFF_CHON_2009 (H, C, O, N)

  1. Budzien, A. P. Thompson, and S. V. Zybin, Reactive molecular dynamics simulations of shock through a single crystal of pentaerythritol tetranitrate, The Journal of Physical Chemistry B, 113, pp. 13142–13151, 2009

ReaxFF_CHONi_2015 (H, C, O, Ni)

  1. Tavazza, T. Senftle, C. Zou, C. Becker, and A. T. van Duin, Molecular Dynamics Investigation of the Effects of Tip–Substrate Interactions during Nanoindentation, The Journal of Physical Chemistry C, 119, pp. 13580–13589, 2015

ReaxFF_CHOSiLiF_2017 (C, F, H, O, Li, Si)

  1. Yun, S. J. Pai, B. C. Yeo, K. Lee, S. Kim, and S. S. Han, Simulation Protocol for Prediction of a Solid-Electrolyte Interphase on the Silicon-based Anodes of a Lithium-Ion Battery: ReaxFF Reactive Force Field, The journal of physical chemistry letters, 8, pp. 2812–2818, 2017

ReaxFF_CHOSi_2005 (H, C, Si, O)

  1. Chenoweth, S. Cheung, A. C. Van Duin, W. A. Goddard, and E. M. Kober, Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field, Journal Of The American Chemical Society, 127, pp. 7192–7202, 2005

ReaxFF_CHOV_2008 (H, C, O, V)

  1. Chenoweth, A. C. van Duin, and W. A. Goddard, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation, The Journal of Physical Chemistry A, 112, pp. 1040–1053, 2008

ReaxFF_CHO_2008 (H, C, O)

  1. Chenoweth, A. C. van Duin, and W. A. Goddard, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation, The Journal of Physical Chemistry A, 112, pp. 1040–1053, 2008

ReaxFF_C_2015 (C)

    1. Srinivasan, A. C. van Duin, and P. Ganesh, Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene, The Journal of Physical Chemistry A, 119, pp. 571–580, 2015

ReaxFF_GaN (Ga, N)

. Oliver Böhm, GaN parameter set Version 4.6, 2015

ReaxFF_HOAu_2010 (H, Au, O)

    1. Keith, D. Fantauzzi, T. Jacob, and A. C. T. van Duin, Reactive forcefield for simulating gold surfaces and nanoparticles, Phys. Rev. B, 81, p. 235404, 2010 link

ReaxFF_HONB_2010 (H, B, O, N)

    1. Weismiller, A. C. T. V. Duin, J. Lee, and R. A. Yetter, ReaxFF Reactive Force Field Development and Applications for Molecular Dynamics Simulations of Ammonia Borane Dehydrogenation and Combustion, The Journal of Physical Chemistry A, 114, pp. 5485-5492, 2010

ReaxFF_HOSiAlLi_2012 (H, Si, Al, O, Li)

  1. Narayanan, A. C. van Duin, B. B. Kappes, I. E. Reimanis, and C. V. Ciobanu, A reactive force field for lithium–aluminum silicates with applications to eucryptite phases, Modelling and Simulation in Materials Science and Engineering, 20, p. 015002, 2012

ReaxFF_HOZn_2010 (H, Zn, O)

  1. Raymand, A. C. van Duin, D. Spångberg, W. A. G. III, and K. Hermansson, Water adsorption on stepped ZnO surfaces from MDsimulation, Surface Science, 604, pp. 741 - 752, 2010 link

ReaxFF_HPd_2014 (H, Pd)

    1. Senftle, M. J. Janik, and A. C. van Duin, A ReaxFF investigation of hydride formation in palladium nanoclusters via Monte Carlo and molecular dynamics simulations, The Journal of Physical Chemistry C, 118, pp. 4967–4981, 2014

ReaxFF_LiS_2015 (S, Li)

    1. Islam, A. Ostadhossein, O. Borodin, A. T. Yeates, W. W. Tipton, R. G. Hennig, N. Kumar, and A. C. van Duin, ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials, Physical Chemistry Chemical Physics, 17, pp. 3383–3393, 2015

ReaxFF_SiCNH (H, Si, C, N)

. Oliver Böhm, SiCNH parameter set, 2015

ReaxP_AlHOSi_2016 (H, Si, Al, O)

  1. Böhm, S. Pfadenhauer, R. Leitsmann, P. Plänitz, E. Schreiner, and M. Schreiber, ReaxFF+-a New Reactive Force Field Method for the Accurate Description of Ionic Systems and Its Application to the Hydrolysation of Aluminosilicates, The Journal of Physical Chemistry C, 2016

Rohl_OZn_1996 (Zn, O)

  1. Nyberg, M. A. Nygren, L. G. Pettersson, D. H. Gay, and A. L. Rohl, Hydrogen dissociation on reconstructed ZnO surfaces, The Journal of Physical Chemistry, 100, pp. 9054–9063, 1996

Schelling_OYZr_2001 (Y, Zr, O)

    1. Schelling, S. R. Phillpot, and D. Wolf, Mechanism of the Cubic-to-Tetragonal Phase Transition in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation, Journal of the American Ceramic Society, 84, pp. 1609–1619, 2001 link

StillingerWeber_BN_2005 (B, N)

    1. Moon and H. J. Hwang, A modified Stillinger–Weber empirical potential for boron nitride, Applied surface science, 239, pp. 376–380, 2005

StillingerWeber_BN_2007 (B, N)

    1. Moon, M. S. Son, and H. J. Hwang, Theoretical study on structure of boron nitride fullerenes, Applied surface science, 253, pp. 7078–7081, 2007

StillingerWeber_CdTeZnSeHgS_2013 (Zn, Cd, S, Te, Hg, Se)

  1. Zhou, D. Ward, J. Martin, F. van Swol, J. Cruz-Campa, and D. Zubia, Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te, Physical Review B, 88, p. 085309, 2013

StillingerWeber_InGaN_2011 (N, Ga, In)

  1. Zhang, A. Chatterjee, C. Grein, A. J. Ciani, and P. W. Chung, Atomic-scale modeling of Inx Ga1-x N quantum dot self-assembly, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 29, p. 03C133, 2011 link

StillingerWeber_InGaN_2015 (N, Ga, In)

  1. Zhou and R. E. Jones, Towards Molecular Dynamics Simulations of InGaN Nanostructures., 2015 link

StillingerWeber_MoS_2013 (Mo, S)

  1. Jiang, H. S. Park, and T. Rabczuk, Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity, Journal of Applied Physics, 114, p. 064307, 2013

StillingerWeber_SiGe_1995 (Si, Ge)

  1. Laradji, D. Landau, and B. Dünweg, Structural properties of Si 1-x Ge x alloys: A Monte Carlo simulation with the Stillinger-Weber potential, Physical Review B, 51, p. 4894, 1995

StillingerWeber_SiGe_2008 (Si, Ge)

  1. Gabriel, Atomistic simulation of solid-phase epitaxial regrowth of amorphous Germanium, 2008

StillingerWeber_SiOCF_2005 (Si, C, O, F)

  1. Smirnov, A. Stengach, K. Gaynullin, V. Pavlovsky, S. Rauf, P. Stout, and P. Ventzek, Molecular-dynamics model of energetic fluorocarbon-ion bombardment on SiO 2 I. Basic model and CF 2+-ion etch characterization, Journal of applied physics, 97, p. 093302, 2005

StillingerWeber_Si_1985 (Si)

    1. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 31, pp. 5262–5271, 1985

SuttonChen_Classical_1998 (Ni, Ag, Pt, Ir, Au, Pd, Rh, Cu)

  1. Kimura, Y. Qi, T. Cagin, and W. Goddard, The quantum Sutton–Chen many-body potential for properties of fcc metals, Phys. Rev., to be submitted, 1998

SuttonChen_Fe_2000 (Fe)

    1. Belonoshko, R. Ahuja, and B. Johansson, Quasi–Ab initio molecular dynamic study of Fe melting, Physical Review Letters, 84, p. 3638, 2000

SuttonChen_NiAl_2008 (Ni, Al)

  1. Kazanc and C. Tatar, Investigation of the effect of pressure on some physical parameters and thermoelastic phase transformation of NiAl alloy, International Journal of Solids and Structures, 45, pp. 3282–3289, 2008

SuttonChen_NiCuAgAuPtRh_1999 (Ni, Ag, Pt, Au, Rh, Cu)

  1. Cagin, G. Dereli, M. Uludoğan, and M. Tomak, Thermal and mechanical properties of some fcc transition metals, Physical Review B, 59, p. 3468, 1999

SuttonChen_Original_1991 (Ni, Ag, Pt, Ir, Al, Pb, Au, Pd, Rh, Cu)

  1. Rafii-Tabar and A. Sulton, Long-range Finnis-Sinclair potentials for fcc metallic alloys, Philosophical Magazine Letters, 63, pp. 217–224, 1991

SuttonChen_Original_1998 (Ni, Ag, Pt, Ir, Au, Pd, Rh, Cu)

  1. Kimura, Y. Qi, T. Cagin, and W. Goddard, The quantum Sutton–Chen many-body potential for properties of fcc metals, Phys. Rev., to be submitted, 1998

SuttonChen_Quantum_1998 (Ni, Ag, Pt, Ir, Au, Pd, Rh, Cu)

  1. Kimura, Y. Qi, T. Cagin, and W. Goddard, The quantum Sutton–Chen many-body potential for properties of fcc metals, Phys. Rev., to be submitted, 1998

Tangney_AlO_2013 (Al, O)

  1. Sarsam, M. W. Finnis, and P. Tangney, Atomistic force field for alumina fit to density functional theory, The Journal of Chemical Physics, 139, p. 204704, 2013

Tangney_OSi_2002 (Si, O)

  1. Tangney and S. Scandolo, An ab initio parametrized interatomic force field for silica, The Journal of chemical physics, 117, pp. 8898–8904, 2002

Tangney_OTi_2010 (O, Ti)

    1. Han, L. Bergqvist, P. H. Dederichs, H. Müller-Krumbhaar, J. K. Christie, S. Scandolo, and P. Tangney, Polarizable interatomic force field for TiO2 parametrized using density functional theory, Phys. Rev. B, 81, p. 134108, 2010 link

TersoffBrenner_CSiF_1999 (C, Si, F)

    1. Abrams and D. B. Graves, Molecular dynamics simulations of Si etching by energetic CF 3+, Journal of applied physics, 86, pp. 5938–5948, 1999

TersoffBrenner_ClFSi_2003 (Si, Cl, F)

  1. Humbird and D. B. Graves, Improved interatomic potentials for silicon–fluorine and silicon–chlorine, The Journal of Chemical Physics, 120, pp. 2405-2412, 2004 link

TersoffBrenner_SiF_1999 (Si, F)

    1. Abrams and D. B. Graves, Molecular dynamics simulations of Si etching by energetic CF 3+, Journal of applied physics, 86, pp. 5938–5948, 1999

TersoffBrenner_SiF_1999_RepulsionCorrection (Si, F)

    1. Abrams and D. B. Graves, Molecular dynamics simulations of Si etching by energetic CF 3+, Journal of applied physics, 86, pp. 5938–5948, 1999

Tersoff_AlGaAs_2000 (As, Al, Ga)

  1. Nordlund, J. Nord, J. Frantz, and J. Keinonen, Strain-induced Kirkendall mixing at semiconductor interfaces, Computational materials science, 18, pp. 283–294, 2000

Tersoff_AlNO_2009 (Al, O, N)

    1. Okeke and J. Lowther, Molecular dynamics of binary metal nitrides and ternary oxynitrides, Physica B: Condensed Matter, 404, pp. 3577–3581, 2009

Tersoff_AlNO_2009b (Al, O, N)

    1. Okeke and J. Lowther, Molecular dynamics of binary metal nitrides and ternary oxynitrides, Physica B: Condensed Matter, 404, pp. 3577–3581, 2009

Tersoff_Au_2012 (Au)

  1. Backman, N. Juslin, and K. Nordlund, Bond order potential for gold, The European Physical Journal B, 85, pp. 1–5, 2012

Tersoff_BNC_2000 (C, B, N)

  1. Matsunaga, C. Fisher, and H. Matsubara, Tersoff potential parameters for simulating cubic boron carbonitrides, JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS, 39, pp. L48–L51, 2000

Tersoff_BNO_2009 (B, O, N)

    1. Okeke and J. Lowther, Molecular dynamics of binary metal nitrides and ternary oxynitrides, Physica B: Condensed Matter, 404, pp. 3577–3581, 2009

Tersoff_BNO_2009b (B, O, N)

    1. Okeke and J. Lowther, Molecular dynamics of binary metal nitrides and ternary oxynitrides, Physica B: Condensed Matter, 404, pp. 3577–3581, 2009

Tersoff_BN_2003 (B, N)

    1. Moon, M. S. Son, and H. J. Hwang, Molecular-dynamics simulation of structural properties of cubic boron nitride, Physica B: Condensed Matter, 336, pp. 329–334, 2003

Tersoff_BeCH_2009 (H, C, Be)

  1. Björkas, N. Juslin, H. Timko, K. Vörtler, K. Nordlund, K. Henriksson, and P. Erhart, Interatomic potentials for the Be-C-H system, Journal of Physics: Condensed Matter, 21, p. 445002, 2009

Tersoff_BeH_2009 (H, Be)

  1. Björkas, N. Juslin, H. Timko, K. Vörtler, K. Nordlund, K. Henriksson, and P. Erhart, Interatomic potentials for the Be-C-H system, Journal of Physics: Condensed Matter, 21, p. 445002, 2009

Tersoff_BeW_2010 (Be, W)

  1. Björkas, K. Henriksson, M. Probst, and K. Nordlund, A Be–W interatomic potential, Journal of Physics: Condensed Matter, 22, p. 352206, 2010

Tersoff_CH_2005 (H, C)

  1. Juslin, P. Erhart, P. Traskelin, J. Nord, K. O. Henriksson, K. Nordlund, E. Salonen, and K. Albe, Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system, Journal of applied physics, 98, pp. 123520–123520, 2005

Tersoff_CH_2010 (H, C)

  1. Juslin, P. Erhart, P. Traskelin, J. Nord, K. O. Henriksson, K. Nordlund, E. Salonen, and K. Albe, Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system, Journal of applied physics, 98, pp. 123520–123520, 2005
  1. Lindsay and D. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Physical Review B, 81, p. 205441, 2010

Tersoff_C_1989 (C)

  1. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B, 39, pp. 5566–5568, 1989

Tersoff_C_1994 (C)

  1. Tersoff, Chemical order in amorphous silicon carbide, Physical Review B, 49, p. 16349, 1994

Tersoff_C_2005 (C)

  1. Erhart and K. Albe, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide, Physical Review B, 71, p. 035211, 2005

Tersoff_C_2010 (C)

  1. Lindsay and D. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Physical Review B, 81, p. 205441, 2010

Tersoff_C_2012 (C)

    1. Bellido and J. M. Seminario, Molecular Dynamics Simulations of Ion-Bombarded Graphene, The Journal of Physical Chemistry C, 116, pp. 4044-4049, 2012

Tersoff_ErH_2011 (H, Er)

  1. Peng, L. Yang, X. Long, H. Shen, Q. Sun, X. Zu, and F. Gao, Bond-Order Potential for Erbium-Hydride System, The Journal of Physical Chemistry C, 115, pp. 25097–25104, 2011

Tersoff_FeC_2009 (C, Fe)

    1. Henriksson and K. Nordlund, Simulations of cementite: An analytical potential for the Fe-C system, Physical Review B, 79, p. 144107, 2009

Tersoff_FeCu_2012 (Fe, Cu)

    1. Hou, R. S. Wang, J. T. Wang, X. B. Liu, G. Chen, and P. Huang, An analytic bond-order potential for the Fe–Cu system, Modelling and Simulation in Materials Science and Engineering, 20, p. 045016, 2012

Tersoff_FePt_2007 (Fe, Pt)

  1. Müller, P. E. K., and Albe, Thermodynamics of L1_ 0 ordering in FePt nanoparticles studied by Monte Carlo simulations based on an analytic bond-order potential, Physical Review B, 76, p. 155412, 2007

Tersoff_Fe_2007 (Fe)

  1. Müller, P. Erhart, and K. Albe, Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials, Journal of Physics: Condensed Matter, 19, p. 326220, 2007

Tersoff_GaAs_2002 (As, Ga)

  1. Albe, K. Nordlund, J. Nord, and A. Kuronen, Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs, Physical Review B, 66, p. 035205, 2002

Tersoff_GaAs_2008 (As, Ga)

  1. Hammerschmidt, P. Kratzer, and M. Scheffler, Analytic many-body potential for InAs/GaAs surfaces and nanostructures: Formation energy of InAs quantum dots, Physical Review B, 77, p. 235303, 2008

Tersoff_GaAs_2011 (As, Ga)

    1. Fichthorn, Y. Tiwary, T. Hammerschmidt, P. Kratzer, and M. Scheffler, Analytic many-body potential for GaAs (001) homoepitaxy: Bulk and surface properties, Physical Review B, 83, p. 195328, 2011

Tersoff_GaNO_2009 (Ga, O, N)

    1. Okeke and J. Lowther, Molecular dynamics of binary metal nitrides and ternary oxynitrides, Physica B: Condensed Matter, 404, pp. 3577–3581, 2009

Tersoff_GaNO_2009b (Ga, O, N)

    1. Okeke and J. Lowther, Molecular dynamics of binary metal nitrides and ternary oxynitrides, Physica B: Condensed Matter, 404, pp. 3577–3581, 2009

Tersoff_GaN_2003 (Ga, N)

  1. Nord, K. Albe, P. Erhart, and K. Nordlund, Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride, Journal of Physics: Condensed Matter, 15, p. 5649, 2003

Tersoff_InAs_2008 (As, In)

  1. Hammerschmidt, P. Kratzer, and M. Scheffler, Analytic many-body potential for InAs/GaAs surfaces and nanostructures: Formation energy of InAs quantum dots, Physical Review B, 77, p. 235303, 2008

Tersoff_InGaAs_2000 (As, Ga, In)

  1. Nordlund, J. Nord, J. Frantz, and J. Keinonen, Strain-induced Kirkendall mixing at semiconductor interfaces, Computational materials science, 18, pp. 283–294, 2000

Tersoff_InNO_2009 (N, O, In)

    1. Okeke and J. Lowther, Molecular dynamics of binary metal nitrides and ternary oxynitrides, Physica B: Condensed Matter, 404, pp. 3577–3581, 2009

Tersoff_InNO_2009b (N, O, In)

    1. Okeke and J. Lowther, Molecular dynamics of binary metal nitrides and ternary oxynitrides, Physica B: Condensed Matter, 404, pp. 3577–3581, 2009

Tersoff_O_2006 (O)

  1. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, and K. Albe, Analytic bond-order potential for atomistic simulations of zinc oxide, Journal of Physics: Condensed Matter, 18, p. 6585, 2006

Tersoff_Powell_2007 (Al, N, P, As, Ga, In, Sb)

  1. Powell, M. Migliorato, and A. Cullis, Optimized Tersoff potential parameters for tetrahedrally bonded III-V semiconductors, Physical Review B, 75, p. 115202, 2007

Tersoff_PtC_2002 (C, Pt)

  1. Albe, K. Nordlund, and R. S. Averback, Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon, Physical Review B, 65, p. 195124, 2002

Tersoff_Pt_2002 (Pt)

  1. Albe, K. Nordlund, and R. S. Averback, Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon, Physical Review B, 65, p. 195124, 2002

Tersoff_SiBN_2001 (Si, B, N)

  1. Matsunaga and Y. Iwamoto, Molecular dynamics study of atomic structure and diffusion behavior in amorphous silicon nitride containing boron, Journal of the American Ceramic Society, 84, pp. 2213–2219, 2001

Tersoff_SiC_1989 (C, Si)

  1. Tersoff, Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical Review B, 41, pp. 3248–3248, 1990
  1. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B, 39, pp. 5566–5568, 1989

Tersoff_SiC_1994 (C, Si)

  1. Tersoff, Chemical order in amorphous silicon carbide, Physical Review B, 49, p. 16349, 1994

Tersoff_SiC_1998 (Si, C)

  1. Devanathan, T. Diaz de la Rubia, and W. Weber, Displacement threshold energies in β-SiC, Journal of nuclear materials, 253, pp. 47–52, 1998

Tersoff_SiC_2005 (C, Si)

  1. Erhart and K. Albe, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide, Physical Review B, 71, p. 035211, 2005

Tersoff_SiGeO_2013 (Si, Ge, O)

    1. Chuang, Q. Li, D. Leonhardt, S. M. Han, and T. Sinno, Atomistic analysis of Ge on amorphous SiO2 using an empirical interatomic potential, Surface Science, 609, pp. 221–229, 2013

Tersoff_SiGeO_LT_2013 (Si, Ge, O)

    1. Chuang, Q. Li, D. Leonhardt, S. M. Han, and T. Sinno, Atomistic analysis of Ge on amorphous SiO2 using an empirical interatomic potential, Surface Science, 609, pp. 221–229, 2013

Tersoff_SiGe_1989 (Si, Ge)

  1. Tersoff, Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical Review B, 41, pp. 3248–3248, 1990
  1. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B, 39, pp. 5566–5568, 1989

Tersoff_SiNH_1999 (H, Si, N)

  1. de Brito Mota, J. Justo, and A. Fazzio, Hydrogen role on the properties of amorphous silicon nitride, Journal of applied physics, 86, pp. 1843–1847, 1999

Tersoff_SiO_2007 (Si, O)

  1. Munetoh, T. Motooka, K. Moriguchi, and A. Shintani, Interatomic potential for Si–O systems using Tersoff parameterization, Computational materials science, 39, pp. 334–339, 2007

Tersoff_Si_1988 (Si)

  1. Tersoff, New empirical approach for the structure and energy of covalent systems, Physical Review B, 37, p. 6991, 1988
  1. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Physical Review B, 38, pp. 9902–9905, 1988

Tersoff_Si_1988b (Si)

  1. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Physical Review B, 38, pp. 9902–9905, 1988

Tersoff_Si_2005 (Si)

  1. Erhart and K. Albe, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide, Physical Review B, 71, p. 035211, 2005

Tersoff_WCH_2005 (H, C, W)

  1. Juslin, P. Erhart, P. Traskelin, J. Nord, K. O. Henriksson, K. Nordlund, E. Salonen, and K. Albe, Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system, Journal of applied physics, 98, pp. 123520–123520, 2005
  1. Erhart and K. Albe, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide, Physical Review B, 71, p. 035211, 2005

Tersoff_WCH_2005b (H, C, W)

  1. Juslin, P. Erhart, P. Traskelin, J. Nord, K. O. Henriksson, K. Nordlund, E. Salonen, and K. Albe, Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system, Journal of applied physics, 98, pp. 123520–123520, 2005
  1. Erhart and K. Albe, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide, Physical Review B, 71, p. 035211, 2005

Tersoff_WH_2011 (H, W)

  1. Li, X. Shu, Y. Liu, F. Gao, and G. Lu, Modified analytical interatomic potential for a W–H system with defects, Journal of Nuclear Materials, 408, pp. 12–17, 2011

Tersoff_ZnO_2006 (Zn, O)

  1. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, and K. Albe, Analytic bond-order potential for atomistic simulations of zinc oxide, Journal of Physics: Condensed Matter, 18, p. 6585, 2006

Tersoff_Zn_2006 (Zn)

  1. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, and K. Albe, Analytic bond-order potential for atomistic simulations of zinc oxide, Journal of Physics: Condensed Matter, 18, p. 6585, 2006

Trinastic_HfOSiTaTi_2013 (Si, Ta, Hf, O, Ti)

  1. Trinastic, R. Hamdan, Y. Wu, L. Zhang, and H. Cheng, Unified interatomic potential and energy barrier distributions for amorphous oxides, The Journal of chemical physics, 139, p. 154506, 2013

VFF_Keating_CGeSi_1966 (C, Si, Ge)

    1. Keating, Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure, Phys. Rev., 145, pp. 637–645, 1966 link

VFF_Martin_CGeSi_1970 (C, Si, Ge)

    1. Martin, Elastic Properties of ZnS Structure Semiconductors, Phys. Rev. B, 1, pp. 4005–4011, 1970 link

VanBeest_SiOAlP_1990 (P, Si, Al, O)

  1. Van Beest, G. Kramer, and R. Van Santen, Force fields for silicas and aluminophosphates based on ab initio calculations, Physical Review Letters, 64, p. 1955, 1990

Voth_HO_2006 (H, O)

  1. Wu, H. L. Tepper, and G. A. Voth, Flexible simple point-charge water model with improved liquid-state properties, The Journal of Chemical Physics, 124, p. 024503, 2006

Wang_HfOZr_2012 (Hf, O, Zr)

  1. Wang, F. Zahid, J. Wang, and H. Guo, Structure and dielectric properties of amorphous high-κ oxides: HfO2, ZrO2, and their alloys, Phys. Rev. B, 85, p. 224110, 2012 link

Yasukawa_HOSi_1996 (H, Si, O)

  1. Yasukawa, Using An Extended Tersoff Interatomic Potential to Analyze The Static-Fatigue Strength of SiO2 under Atmospheric Influence, JSME international journal. Ser. A, Mechanics and material engineering, 39, pp. 313-320, 1996 link

Yasukawa_OSi_2003 (Si, O)

  1. Yasukawa, An Interatomic Potential for Strength Analysis under Atomospheric Influence, Ibaraki district conference, 2003, pp. 71-72, 2003 link

ASAP potential parameter sets

The ASAP package, which provides the Brenner and the effective-medium-theory (EMT) calculators, has been developed by the Department of Physics at Technical University of Danmark (DTU). For details about ASAP, see also https://wiki.fysik.dtu.dk/asap.

BrennerCalculator (H, C, Si, Ge)

    1. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J, Phys.: Condens. Matter, pp. 783-802, 2002

EMTCalculator (Ni, Cu, Pd, Ag, Pt, Au, Al)

  1. Jacobsen, P. Stoltze, and J. Nørskov, A semi-empirical effective medium theory for metals and alloys, Surface Science, 366, pp. 394-402, 1996 link

[SHC+17]J. Schneider, J. Hamaekers, S.T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom, and K. Stokbro. Atk-classical: A new generation molecular dynamics software package. arXiv, pages 1701.02495, 2017. URL: https://arxiv.org/abs/1701.02495.