Use Crystal Builder to create Bi_2Se_3 bulk configuration.

- GGA and SOGGA band structures.
- Use Surface (Cleave) tool to create Bi_2Se_3(0001) slab.
- SOGGA band structure: Surface states emerge and form a Dirac cone.
- SOGGA DOS: Dirac cone finger print.
- Bloch states on the Dirac cone: Penetration depths of surface states located on the top and bottom surfaces.
- Fermi surface and spin directions.
Use Crystal Builder to set up bulk configuration
GGA and SOGGA band structures

ATK-DFT
- 9x9x9 k-points
- OMX 150 Hartree
- GGA.PBE and SOGGA.PBE
- Use GGA state as initial guess for the SOGGA state

Bulk Bi$_2$Se$_3$ is an insulator
Use Surface (Cleave) to create $\text{Bi}_2\text{Se}_3(0001)$ slab

Define the surface

- **Miller indices**
 - h = 0
 - k = 0
 - l = 1

- **Select an atom for the outer layer**
 - Element: Selenite
 - Atom positions:
 - 0: $a = 0.000$, $b = 0.000$, $c = 0.000$
 - 1: $a = 0.333$, $b = 0.667$, $c = 0.667$
 - 2: $a = 0.667$, $b = 0.333$, $c = 0.333$
 - 3: $a = 0.333$, $b = 0.333$, $c = 0.7$
 - 4: $a = 0.333$, $b = 0.667$, $c = 0.2$
 - 5: $a = 0.667$, $b = 0.000$, $c = 0.000$
 - 6: $a = 0.667$, $b = 0.333$, $c = 0.9$
 - 7: $a = 0.333$, $b = 0.000$, $c = 0.3$
 - 8: $a = 0.333$, $b = 0.333$, $c = 0.6$
 - 9: $a = 0.333$, $b = 0.667$, $c = 0.8$
 - 10: $a = 0.667$, $b = 0.667$, $c = 0.1$
 - 11: $a = 0.667$, $b = 0.333$, $c = 0.4$
 - 12: $a = 0.333$, $b = 0.000$, $c = 0.7$
 - 13: $a = 0.333$, $b = 0.667$, $c = 0.2$

Finalize output configuration

- **Automatically update 3D view**
- **Out-of-plane cell vector \mathbf{v}_z**
 - Type: Non-periodic and normal (slab)
 - Layers: 10 Å
 - Top vacuum: 0.3492 Å, 10.0000 Å
 - Thickness: 1.0000 Å, 28.6400 Å
 - Bottom vacuum: 0.3492 Å, 10.0000 Å

Lattice Parameters

- **Lattice type**: Hexagonal
- **Keep coordinates** constant when changing the lattice
- **Primitive Vectors**
 - x: 2.069, y: -3.58361, z: 0
 - A: 2.069, B: -3.58361, C: 0
 - Volume: 721.282 Å³
SOGGA band structure: Surface states emerge and form a Dirac cone

ATK-DFT
- 9x9x1 k-points
- OMX 150 Hartree
- Electron temperature = 50 K
- SOGGA restarted from GGA state
Analysis from File
- 21x21x1 k-point grid
- Important to include the Gamma point
BlochState analysis

- Script provided
- Surface Bloch states projected onto the C-direction

Figure Description

- A graph showing band structure with labels for bands and angles.
- Band structure is indicated with different lines and markers.
- Directions and angles are labeled accordingly.

Additional Information

- **Bi$_2$Se$_3$ Topological Insulator**
- **QuantumWise**
Bandstructure and BlochState analyses

- Script provided for Bandstructure analysis on a dense k-grid in the vicinity of the Dirac point
- Plots the Fermi surfaces for a single surface state as a contour plot
- Also extracts and plots the spin directions on the $E_F=0.15$ eV contour