Table of Contents

Parallelization of ATK calculations .. 2
 Unit-of-work .. 3
 Parallellization levels in ATK .. 3
 ATK-DFT .. 3
 Bulk calculations ... 4
 Processes per k-point .. 4
 Exercise I: Non-default number of processes per k-point 5
 Speed-up and peak memory reduction 7
 NEGF calculations .. 8
 Automatic distribution of contour points 9
 Processses per contour point .. 10
 Speedup in a device calculation ... 11
Examples of multi-level parallelisms in ATK 12
 Nudged elastic band calculations .. 12
 I-V curve calculations .. 13
 Adaptive Kinetic Monte Carlo simulations 14
 Crystal Structure Prediction ... 15
References ... 16
Parallelization of ATK calculations

Version: 2016.1

ATK uses a range of parallelization techniques to distribute computational workload over a number of computing cores (CPUs). This may reduce the total wall-clock time, either directly or by reducing the peak memory requirement. We will here explore the basics of how to parallelize ATK calculations, both for bulk systems and for NEGF device calculations.

ATK offers multi-level parallelization and will by default try to distribute the computing workload in the best way possible. However, manual tuning of parallelization settings may sometimes be beneficial. In this case, the ATK user needs to be aware of an important distinction between two very different ways to “measure” the effect of parallelization:

Efficiency: If efficiency is the goal of a particular parallelization scheme (which it often is), the speed-up per extra CPU should be as high as possible. That is, a calculation that takes 1 hour in serial (on a single CPU) should ideally take 15 minutes on 4 CPUs. Parallelization efficiency is therefore important if efficient use of CPU resources is more important than the wall-clock time spent on the calculation.

Time-to-result: If the goal of parallelizing over several CPUs is to get the calculation to finish as fast as possible, one will usually choose to compromise on efficiency. For example, parallelizing a bulk calculation with 4 k-points over 40 CPUs will rarely give a speed-up of 40 compared to running the calculation on 1 CPU. However, it will in most cases still lead to a significant reduction of the wall-clock time, by a factor of maybe 10-20 depending on the system. This may therefore result in a less efficient parallelization scheme, when comparing the total CPU-time to the wall-clock time, but may be preferred if getting the result quickly is more important than very efficient use of computing resources.
Unit-of-work

When distributing an entire ATK calculation over a number of CPUs, the smallest “package” of computational workload that is conveniently assigned to a single CPU is one “unit-of-work”. Importantly, this entity is not the same for bulk and device (NEGF) calculations.

<table>
<thead>
<tr>
<th>Bulks</th>
<th>Devices (NEGF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (k)-point</td>
<td>1 contour point</td>
</tr>
</tbody>
</table>

For a bulk calculation, the natural unit-of-work is one single \(k\)-point: A bulk calculation with 4 irreducible \(k\)-points is efficiently parallelized over 4 CPUs, and ATK will automatically assign one \(k\)-point to each CPU, provided 4 CPUs are available.

For device calculations, one NEGF contour integration point is the fundamental unit-of-work. Contributions to the density matrix from all transverse \(k\)-points (\(N_k\), orthogonal to the transport direction) must be evaluated at each contour energy point (\(N_e\), usually equal to 48), so the total workload consists of \(N_k \times N_e\) units of work. ATK will automatically distribute these over the available CPUs as efficiently as possible. Obviously, the contour integration is fully distributed if \(N_k \times N_e\) CPUs are available (one contour point on each CPU).

Parallelization levels in ATK

The ATK calculator engines contain several layers of algorithms that can benefit from parallelization in different ways. In general, ATK can parallelize over both MPI processes and threads, but it is often most efficient to use only one of these methods for a given calculation. In general MPI is most efficient for ATK-DFT, while threading can be used for ATK-ForceField.

Note

We plan on improving this behavior for ATK 2017, so threading becomes just as effective as MPI for ATK-DFT.

ATK-DFT

For regular ATK-DFT calculations, it is very efficient to parallelize over \(k\)-points, and this will always be prioritized. In all cases, ATK will automatically determine the optimal parallelization strategy based on the available CPU cores. Additionally, it will print a warning if the specifics of the calculation makes it impossible to use an optimal parallelization with the current number of CPU cores. In this case, it will be more efficient to change the number of CPU cores to better match the calculation, such as making sure the number of CPU cores is a divisor of the total number of \(k\)-points.

Warning

The automatic parallelization scheme in ATK is built on the assumption that you have enough (infinite) memory available. You should therefore check the settings for memory-intensive calculations to ensure that the calculations run with optimal efficiency.

In more advanced calculations, such as NEB and AKMC, further levels of parallelization can be used to increase efficiency. We will get back to this at the end of this document.
Bulk calculations

As mentioned above, the fundamental unit-of-work for a bulk calculation is one single \(k \)-point. Default parallelization settings will automatically assign 1 \(k \)-point per MPI process, if possible. However, 2 \(k \)-points cannot be optimally distributed on 3 cores (1 core would be idle), but they can actually be distributed on 4 cores by assigning 2 cores to work on each \(k \)-point. This is illustrated in the figure below.

![Diagram of CPU workload](image)

Fig. 18 Matrix illustrating how ATK distributes the workload in the case of a bulk calculation with 2 irreducible \(k \)-points.

The matrix shows how ATK will **automatically** distribute the workload in the case of a bulk calculation with 2 irreducible \(k \)-points. Each filled circle represents a \(k \)-point, i.e., one unit-of-work. **Blue**, **red**, and **green** colors indicate that 1, 2, and 3 processors are used per \(k \)-point, respectively. The black dashes indicate that one CPU will be idle if the calculation is parallelized over 3 or 5 processors.

Processes per \(k \)-point

The matrix in **Fig. 18** shows that choosing the number of computing cores, \(N_{\text{MPI}} \), to be either 1 or a multiple of the number of \(k \)-points, \(N_k \), leads to a parallelization scheme that utilizes all the allocated cores. With 4, 6, 8, etc. cores, the workload for each \(k \)-point is **automatically** shared by several cores. However, this kind of parallelization can also be selected **manually** by the user.

The [DiagonalizationSolver](#) calculates the density matrix by direct diagonalization of the Hamiltonian matrix, and the solver accepts the parameter `processes_per_kpoint`, which sets the number of MPI processes assigned to work on each \(k \)-point. In the matrix in **Fig. 18**, `processes_per_kpoint` is 1, 2, and 3 for **blue**, **red**, and **green** circles, respectively.

While `processes_per_kpoint = Automatic` is the default, it is easy to set it using the [Script Generator](#). Open the [Calculator](#) settings window, and select [Algorithm Parameters](#). Make sure [DiagonalizationSolver](#) is chosen as eigenvalue solver, and click the [Parameters](#) button to open a small window that allows you to manually set the number of processes per \(k \)-point.
Exercise I: Non-default number of processes per \(k \)-point

- Open the VNL Builder, click Add » From Database, and add the Silver bulk configuration to the Stash.
- Use the Bulk Tools » Repeat plugin to double the size of the configuration along all directions (2x2x2 repetition).
- Send the silver bulk to the Script Generator, and double-click the New Calculator icon to add the default ATK-DFT calculator to the script.
- Double-click the added calculator to open the calculator settings window. Select Algorithm Parameters and click the Parameters button.
- Then change the number of processes per \(k \)-point from Automatic to 2, and click OK. Also close the calculator settings window.

Tip

The DiagonalizationSolver also accepts the parameter bands_above_fermi_level, which is by default set to All bands. Explicitly setting this parameter to a positive integer can often be used to speed up the ATK-DFT calculation. However, be aware that too small values of bands_above_fermi_level will lead to inaccuracies in the diagonalization routine.

- Finally, send the script to the Editor to see how the parameter processes_per_kpoint is set in the script. The script will look like shown below.
Notice lines 41–43, where `processes_per_kpoint=2` is set for the `DiagonalizationSolver`. This defines the density matrix method that is passed on to the `AlgorithmParameters` object, which is eventually given as an option for the `LCAOCalculator`.

If you have MPI installed on your machine, you should try to run the calculation with parallelization over 2 cores. Use either the Job Manager, or run the script directly from Command-line.
$ mpiexec -n 2 atkpython Silver.py > Silver.log

- In any case, you will the following **DiagonalizationSolver parallelization report** in the ATK job logfile, here named `Silver.log`:

```
+------------------------------------------------------------------------------+
| DiagonalizationSolver parallelization report.                                |
+------------------------------------------------------------------------------+
| Total number of processes: 2                                                |
| Total number of k-points: 14                                                |
| Processes per k-point: 2                                                    |
| Number of process groups: 1                                                 |
+------------------------------------------------------------------------------+
```

Speed-up and peak memory reduction

The figure below illustrates how the calculation wallclock time and peak memory requirement of a simple ATK-DFT calculation may both be reduced by using MPI parallelization. The bulk calculation has 4 irreducible \(k \)-points.
In Fig. 19, blue triangles indicate wallclock time and red circles indicate the peak memory requirement on each core. Horizontal blue lines indicate 100%, 50%, 25%, and 12.5% of the wallclock time without parallelization (1 MPI process). They indicate perfect efficiency for 1, 2, 4, and 8 MPI processes.

It is clear that a significant speed-up is gained with 2–4 MPI processes, and that using 4 cores (such that each k-point fits onto a single core) reduces the wallclock time by almost a factor of 4. However, 5–7 MPI processes bring no further performance gains, because the extra cores are largely idle (there are only 4 k-points to distribute). A significant speed-up occurs with 8 MPI processes (on 8 cores), where the value of processes_per_kpoint automatically switches from 1 to 2, such that all 8 cores can do useful work. With this in mind, the green circles indicate the most efficient choices for the number of MPI processes.

Regarding peak memory, the most significant memory reduction happens already with 2 MPI processes. The smallest peak memory is obtained with processes_per_kpoint larger than 1, i.e., 8 MPI processes. Bear in mind that the amount of peak memory reduction obtainable by workload distribution is highly system dependent. Large systems will usually offer better opportunities for reducing the memory footprint this way.

NEGF calculations

In a SurfaceConfiguration or in a DeviceConfiguration, the system is effectively treated as infinite along the C cell vector, and as periodic along the A and B cell vectors. The 3D Brillouin zone typical of a BulkConfiguration is thus projected onto a 2D Brillouin zone associated with the periodically repeated system in A and B. The electronic structure of the system is thus solved in a way analogous to a BulkConfiguration in A and B, but in a different way along C.
The GreensFunction method uses a block tridiagonal inversion method used to calculate the Green’s function and lesser Green’s function at each at each k-point and at each energy ε. The lesser Green’s function is then used to obtain the full density matrix of the system \hat{D}:

$$\hat{D} = -\frac{1}{\pi} \int \int \text{Im} G^<(\varepsilon, k) \, d\varepsilon \, dk$$

where $G^<(\varepsilon, k)$ is the lesser Green’s function. In ATK, the meaning of ε depends on whether the system is at equilibrium or out-of-equilibrium:

- **Equilibrium**: ε is a complex energy and the Green’s function is obtained using complex contour integration
- **Non-equilibrium**: ε is a real energy and the Green’s function is obtained using real contour integration

In practice, the integration is carried out considering a double weighted sum over two discrete sets of k-points $N_k = \{k_1, \ldots, k_n\}$ and energies $M_\varepsilon = \{\varepsilon_1, \ldots, \varepsilon_m\}$

$$\hat{D} = -\frac{1}{\pi} \sum_{i=1}^{N_k} \sum_{j=1}^{M_\varepsilon} w_{k_i, \varepsilon_j} \text{Im} G^<(\varepsilon_j, k_i)$$

Note

Since the evaluation of the Green’s function at non-equilibrium is done using real contour integration, many more ε-points are needed! This also means the calculation can potentially scale to many more processes.

The evaluation of each element $G_{i,j}^<$ is the computationally intensive part of the whole procedure and takes approximately the same time for both i and j, so the double sum can be conveniently rewritten as a single sum over a generalized set of contour points $N_k + M_\varepsilon = \{x_1, \ldots, x_{n+m}\}$, which refer both to energies and k-points:

$$\hat{D} = -\frac{1}{\pi} \sum_{i=1}^{N_k+M_\varepsilon} w_{k, \varepsilon_i} \text{Im} G^<(x_i)$$

Each contour point can be regarded as the unit of work in a NEGF calculation.

Automatic distribution of contour points

By default, ATK tries to distribute the contour points in a NEGF calculation on as many processes as possible. The evaluation of each contour point is done independently, which implies the following distribution rules for
\[N_k \times M_e \text{ contour points:} \]

- \[N_{MPI} = N_k \times M_e \]: An optimal distribution of 1 contour point per process is achieved
- \[N_{MPI} \leq N_k \times M_e \]: ATK will calculate groups of \[N_{MPI} \] processes stepwise. If \[N_{MPI} \] is not a dividend of \[N_k \times M_e \], some processes will be partially idle.
- \[N_{MPI} > N_k \times M_e \]: There will not be any improvement compared to the ideal case, but more memory will be available for each contour point.

Processes per contour point

The option \(\text{processes_per_contour_point} \) allows to control the **number of processes used to solve each individual unit of work**. In a device or surface calculation, it can be set in the Script Generator by opening the Calculator settings window, and selecting Device Algorithm Parameters. Make sure \(\text{GreensFunction} \) is chosen as the method, and click the Parameters button to open a small window that allows you to manually set the number of processes per contour point.

The default value \(\text{processes_per_contour_point} = 1 \) provides the maximum efficiency in the calculation. For very large calculations, setting \(\text{processes_per_contour_point} \) to a number larger than 1 allows you to increase the available memory per individual unit of work beyond that available for a single process. As an example, suppose you have \(N_k \times M_e \) contour points and \(N_k \times M_e \) processes, each one having a maximum memory available which is only half of that required to solve a contour point. In this case, by setting \(\text{processes_per_contour_point} = 2 \), two groups of \((N_k \times M_e)/2 \) will be solved in a stepwise fashion by using two cores per unit of work, effectively
doubling the memory available per contour point.

Speedup in a device calculation

Fig. 21 shows the parallel scaling of a NEGF calculation of a Ag/Si(100) interface, similar to the one considered in the paper “General atomistic approach for modeling metal–semiconductor interfaces using density functional theory and non-equilibrium Green's function” [cSMB+16]. The system is calculated at equilibrium using $N_k = 10$ k-points in the irreducible 2D Brillouin zone, and $M_\varepsilon = 48$ ε-points on the complex contour for the evaluation of the equilibrium Green's function. This results in a total of $N_k \times M_\varepsilon = 480$ contour points.

The number of processes N_{MPI} has been chosen to be always a divisor of 480, to avoid the presence of idle processes during the calculation. It can be seen that the speedup is close ideal for all the different number of processes considered. As expected, the total walltime for $\text{processes}_\text{per}_\text{contour}_\text{point} = 2$ ($\text{processes}_\text{per}_\text{contour}_\text{point} = 4$) is around two (four) times larger than for $\text{processes}_\text{per}_\text{contour}_\text{point} = 1$ using the same number of processes, because 2 (4) blocks of 240 (120) units of work are solved stepwise. However, the memory available per unit of work is two (four) times larger for $\text{processes}_\text{per}_\text{contour}_\text{point} = 2$ ($\text{processes}_\text{per}_\text{contour}_\text{point} = 4$) compared to $\text{processes}_\text{per}_\text{contour}_\text{point} = 1$.

![Graph showing speedup in a device calculation](image)
Examples of multi-level parallelisms in ATK

In the preceding sections, we have discussed the basics of how MPI parallelism can be used to distribute the workload of individual ATK calculations for bulks and devices. However, ATK also offers advanced multi-level parallelism, where the workload of composite calculations may be distributed from the highest level of a hierarchic workflow all the way down to the lowest level, where only one unit-of-work is left.

Such composite calculations include nudged elastic band (NEB) calculations, IV-curve calculations, adaptive kinetic Monte Carlo (AKMC) simulations, and Crystal Structure Prediction using a genetic algorithm, amongst others.

All such methods require a workflow involving calculations for several different structures at the same time, and often quite many of them. Multi-level parallelization makes it possible to run several different calculations for several different structures at the same time, thereby reducing the time-to-result.

Multi-level parallelism is of course automatically enabled if the number of assigned MPI processes is sufficient. However, the Parallel Parameters calculator settings may be used to manually set the desired scheme for multi-level distribution of the workload.

Nudged elastic band calculations

Consider first an example of ATK multi-level parallelization of NEB calculations, here using 64 MPI processes in total. The calculation for each of the 4 NEB images has 2 irreducible k-points. The figure below shows how the full NEB calculation is parallelized over first images and then over k-points for each image.
Efficient parallelization of Nudged Elastic Band (NEB) calculations: example for 64 CPUs (or 64 MPI processes)

- **Parallelization level I**: 64 CPUs are distributed over 4 groups with 16 CPUs for each group, where each group is assigned to a single NEB image. Setting the number of CPUs per group is automatically done by ATK.

 If needed, you may explicitly set the number of MPI processes per NEB image in the VNL Scripter (Processes per NEB image), or set it in the script as follows:

  ```python
  parallel_parameters = ParallelParameters(processes_per_neb_image=16)
  ```

- **Parallelization level II**: If the ATK calculator for the NEB calculation uses \(N_k \) \(k \)-points for the Brillouin zone integration, e.g., \(N_k = 2 \), each image group can be divided into 2 groups with 8 CPUs per \(k \)-point. ATK automatically sets this parallelization.

 If needed, you may also set the number of MPI processes per \(k \)-point manually in the VNL Scripter (New Calculator ▶ Algorithm Parameters ▶ DiagonalizationSolver Parameters).

- **Parallelization level III**: ATK automatically sets this parallelization.

I-V curve calculations

Computing an I-V curve requires a number of NEGF device calculations at different biases. Multi-level parallelism is therefore used to distribute the workload over bias points and NEGF contour points for each bias.
Parallelization level I: 192 CPUs are distributed over 2 groups with 96 CPUs per group, where each group is assigned to a single bias calculation. Setting the number of CPUs per group is automatically done by ATK.

If needed, you may explicitly set the number of MPI processes per bias point in the VNL Scripter (Processes per bias point), or set it in the script as follows:

```python
parallel_parameters = ParallelParameters(processes_per_bias_point=96)
```

Parallelization level II: If the ATK calculator for the I-V Curve calculation uses $N_e = 48$ energy points for the NEGF contour integration, and $N_k = 2$ k-points for the 2D Brillouin zone integration at a given energy, each bias group can be divided into 96 groups with 1 CPU per contour (k, energy) point. ATK automatically sets this parallelization.

If needed, you may also set the number of MPI processes per contour point manually in the script as follows:

```python
parallel_parameters = ParallelParameters(processes_per_bias_point=96, processes_per_contour_point=1)
```

Adaptive Kinetic Monte Carlo simulations

The AKMC method is an obvious candidate for multi-level parallelization. A number of saddle searches must be carried out, and ATK will by default try to fully distribute the workload. We will here consider AKMC calculations using ATK-DFT, as efficient parallelization is most important in this case, though AKMC with ATK-ForceField also benefits from parallelization.
Efficient parallelization of Adaptive Kinetic Monte Carlo (AKMC) simulations: example for 192 CPUs (or MPI processes)

- **Parallelization level I:** 192 CPUs are distributed over 48 groups with 4 CPU per group, where each group is assigned to a single saddle point search. Setting the number of CPUs per group is automatically done by ATK.

 If needed, you may explicitly set the number of MPI processes per saddle search in the VNL Scripter (Processes per saddle search), or set it in the script as follows:

  ```python
  parallel_parameters = ParallelParameters(processes_per_saddle_search=4)
  ```

- **Parallelization level II:** If the ATK calculator for the AKMC calculation uses N_k k-points for the Brillouin zone integration, e.g., $N_k = 2$, each image group can be divided into 2 groups with 2 CPUs per k-point. ATK automatically sets this parallelization.

 If needed, you may also set the number of MPI processes per k-point manually in the VNL Scripter (New Calculator -> Algorithm Parameters -> DiagonalizationSolver Parameters).

- **Parallelization level III:** ATK automatically sets this parallelization.

Crystal Structure Prediction

A genetic algorithm relies on continuously evolving and improving generations of candidate minimum-energy configurations. Each generation consists of several (sometimes hundreds or thousands) of different configurations that all need to be geometry optimized. Multi-level parallelism will therefore give a significant speed-up for such calculations in most cases.
Efficient parallelization of Global Optimization calculations:
example for 192 CPUs (or MPI processes)

- **Parallelization level I**: 192 CPUs are distributed over 48 groups with 4 CPUs per group, where each group is assigned to an individual configuration calculation. Setting the number of CPUs per group is automatically done by ATK.

 If needed, you may explicitly set the number of MPI processes per individual configuration in the VNL Scripter (Processes per individual), or set it in the script as follows:

  ```python
  parallel_parameters = ParallelParameters(processes_per_individual=4)
  ```

- **Parallelization level II**: If the ATK calculator for the Crystal Structure Prediction calculation uses N_k k-points for the Brillouin zone integration, e.g., $N_k = 2$, each image group can be divided into 2 groups with 2 CPUs per k-point. ATK automatically sets this parallelization.

 If needed, you may also set the number of MPI processes per k-point manually in the VNL Scripter (New Calculator • Algorithm Parameters • DiagonalizationSolver Parameters).

- **Parallelization level III**: ATK automatically sets this parallelization.

References